AT2k Design BBS Message Area
Casually read the BBS message area using an easy to use interface. Messages are categorized exactly like they are on the BBS. You may post new messages or reply to existing messages! You are not logged in. Login here for full access privileges. |
Previous Message | Next Message | Back to Computer Support/Help/Discussion... <-- <--- | Return to Home Page |
|
||||||
From | To | Subject | Date/Time | |||
Sean Rima | All | CRYPTO-GRAM, January 15, 2021 |
January 19, 2021 2:52 PM * |
|||
Crypto-Gram January 15, 2021 by Bruce Schneier Fellow and Lecturer, Harvard Kennedy School schneier@schneier.com https://www.schneier.com A free monthly newsletter providing summaries, analyses, insights, and commentaries on security: computer and otherwise. For back issues, or to subscribe, visit Crypto-Gram's web page. Read this issue on the web These same essays and news items appear in the Schneier on Security blog, along with a lively and intelligent comment section. An RSS feed is available. ** *** ***** ******* *********** ************* In this issue: If these links don't work in your email client, try reading this issue of Crypto-Gram on the web. Another Massive Russian Hack of US Government Networks How the SolarWinds Hackers Bypassed Duo's Multi-Factor Authentication Zodiac Killer Cipher Solved Mexican Drug Cartels with High-Tech Spyware More on the SolarWinds Breach US Schools Are Buying Cell Phone Unlocking Systems NSA on Authentication Hacks (Related to SolarWinds Breach) Eavesdropping on Phone Taps from Voice Assistants Investigating the Navalny Poisoning How China Uses Stolen US Personnel Data Russia's SolarWinds Attack On the Evolution of Ransomware Brexit Deal Mandates Old Insecure Crypto Algorithms Amazon Has Trucks Filled with Hard Drives and an Armed Guard Military Cryptanalytics, Part III Latest on the SVR's SolarWinds Hack Backdoor in Zyxel Firewalls and Gateways Extracting Personal Information from Large Language Models Like GPT-2 Russia's SolarWinds Attack and Software Security APT Horoscope Changes in WhatsApp's Privacy Policy Cloning Google Titan 2FA keys On US Capitol Security -- By Someone Who Manages Arena-Rock-Concert Security Finding the Location of Telegram Users Upcoming Speaking Engagements Click Here to Kill Everybody Sale ** *** ***** ******* *********** ************* Another Massive Russian Hack of US Government Networks [2020.12.15] The press is reporting a massive hack of US government networks by sophisticated Russian hackers. Officials said a hunt was on to determine if other parts of the government had been affected by what looked to be one of the most sophisticated, and perhaps among the largest, attacks on federal systems in the past five years. Several said national security-related agencies were also targeted, though it was not clear whether the systems contained highly classified material. [...] The motive for the attack on the agency and the Treasury Department remains elusive, two people familiar with the matter said. One government official said it was too soon to tell how damaging the attacks were and how much material was lost, but according to several corporate officials, the attacks had been underway as early as this spring, meaning they continued undetected through months of the pandemic and the election season. The attack vector seems to be a malicious update in SolarWinds’ “Orion” IT monitoring platform, which is widely used in the US government (and elsewhere). SolarWinds’ comprehensive products and services are used by more than 300,000 customers worldwide, including military, Fortune 500 companies, government agencies, and education institutions. Our customer list includes: More than 425 of the US Fortune 500 All ten of the top ten US telecommunications companies All five branches of the US Military The US Pentagon, State Department, NASA, NSA, Postal Service, NOAA, Department of Justice, and the Office of the President of the United States All five of the top five US accounting firms Hundreds of universities and colleges worldwide I’m sure more details will become public over the next several weeks. EDITED TO ADD (12/15): More news. ** *** ***** ******* *********** ************* How the SolarWinds Hackers Bypassed Duo's Multi-Factor Authentication [2020.12.15] This is interesting: Toward the end of the second incident that Volexity worked involving Dark Halo, the actor was observed accessing the e-mail account of a user via OWA. This was unexpected for a few reasons, not least of which was the targeted mailbox was protected by MFA. Logs from the Exchange server showed that the attacker provided username and password authentication like normal but were not challenged for a second factor through Duo. The logs from the Duo authentication server further showed that no attempts had been made to log into the account in question. Volexity was able to confirm that session hijacking was not involved and, through a memory dump of the OWA server, could also confirm that the attacker had presented cookie tied to a Duo MFA session named duo-sid. Volexity’s investigation into this incident determined the attacker had accessed the Duo integration secret key (akey) from the OWA server. This key then allowed the attacker to derive a pre-computed value to be set in the duo-sid cookie. After successful password authentication, the server evaluated the duo-sid cookie and determined it to be valid. This allowed the attacker with knowledge of a user account and password to then completely bypass the MFA set on the account. It should be noted this is not a vulnerability with the MFA provider and underscores the need to ensure that all secrets associated with key integrations, such as those with an MFA provider, should be changed following a breach. Again, this is not a Duo vulnerability. From ArsTechnica: While the MFA provider in this case was Duo, it just as easily could have involved any of its competitors. MFA threat modeling generally doesn’t include a complete system compromise of an OWA server. The level of access the hacker achieved was enough to neuter just about any defense. ** *** ***** ******* *********** ************* Zodiac Killer Cipher Solved [2020.12.16] The SF Chronicle is reporting (more details here), and the FBI is confirming, that a Melbourne mathematician and team has decrypted the 1969 message sent by the Zodiac Killer to the newspaper. There’s no paper yet, but there are a bunch of details in the news articles. Here’s an interview with one of the researchers: Cryptologist David Oranchak, who has been trying to crack the notorious “340 cipher” (it contains 340 characters) for more than a decade, made a crucial breakthrough earlier this year when applied mathematician Sam Blake came up with about 650,000 different possible ways in which the code could be read. From there, using code-breaking software designed by Jarl Van Eycke, the team’s third member, they came up with a small number of valuable clues that helped them piece together a message in the cipher ** *** ***** ******* *********** ************* Mexican Drug Cartels with High-Tech Spyware [2020.12.17] Sophisticated spyware, sold by surveillance tech companies to Mexican government agencies, are ending up in the hands of drug cartels: As many as 25 private companies -- including the Israeli company NSO Group and the Italian firm Hacking Team -- have sold surveillance software to Mexican federal and state police forces, but there is little or no regulation of the sector -- and no way to control where the spyware ends up, said the officials. Lots of details in the article. The cyberweapons arms business is immoral in many ways. This is just one of them. ** *** ***** ******* *********** ************* More on the SolarWinds Breach [2020.12.17] The New York Times has more details. About 18,000 private and government users downloaded a Russian tainted software update -- a Trojan horse of sorts -- that gave its hackers a foothold into victims’ systems, according to SolarWinds, the company whose software was compromised. Among those who use SolarWinds software are the Centers for Disease Control and Prevention, the State Department, the Justice Department, parts of the Pentagon and a number of utility companies. While the presence of the software is not by itself evidence that each network was compromised and information was stolen, investigators spent Monday trying to understand the extent of the damage in what could be a significant loss of American data to a foreign attacker. It’s unlikely that the SVR (a successor to the KGB) penetrated all of those networks. But it is likely that they penetrated many of the important ones. And that they have buried themselves into those networks, giving them persistent access even if this vulnerability is patched. This is a massive intelligence coup for the Russians and failure for the Americans, even if no classified networks were touched. Meanwhile, CISA has directed everyone to remove SolarWinds from their networks. This is (1) too late to matter, and (2) likely to take many months to complete. Probably the right answer, though. This is almost too stupid to believe: In one previously unreported issue, multiple criminals have offered to sell access to SolarWinds’ computers through underground forums, according to two researchers who separately had access to those forums. One of those offering claimed access over the Exploit forum in 2017 was known as “fxmsp” and is wanted by the FBI “for involvement in several high-profile incidents,” said Mark Arena, chief executive of cybercrime intelligence firm Intel471. Arena informed his company’s clients, which include U.S. law enforcement agencies. Security researcher Vinoth Kumar told Reuters that, last year, he alerted the company that anyone could access SolarWinds’ update server by using the password “solarwinds123” “This could have been done by any attacker, easily,” Kumar said. Neither the password nor the stolen access is considered the most likely source of the current intrusion, researchers said. That last sentence is important, yes. But the sloppy security practice is likely not an isolated incident, and speaks to the overall lack of security culture at the company. And I noticed that SolarWinds has removed its customer page, presumably as part of its damage control efforts. I quoted from it. Did anyone save a copy? EDITED TO ADD: Both the Wayback Machine and Brian Krebs have saved the SolarWinds customer page. ** *** ***** ******* *********** ************* US Schools Are Buying Cell Phone Unlocking Systems [2020.12.18] Gizmodo is reporting that schools in the US are buying equipment to unlock cell phones from companies like Cellebrite: Gizmodo has reviewed similar accounting documents from eight school districts, seven of which are in Texas, showing that administrators paid as much $11,582 for the controversial surveillance technology. Known as mobile device forensic tools (MDFTs), this type of tech is able to siphon text messages, photos, and application data from student’s devices. Together, the districts encompass hundreds of schools, potentially exposing hundreds of thousands of students to invasive cell phone searches. The eighth district was in Los Angeles. ** *** ***** ******* *********** ************* NSA on Authentication Hacks (Related to SolarWinds Breach) [2020.12.18] The NSA has published an advisory outlining how “malicious cyber actors” are “are manipulating trust in federated authentication environments to access protected data in the cloud.” This is related to the SolarWinds hack I have previously written about, and represents one of the techniques the SVR is using once it has gained access to target networks. From the summary: Malicious cyberactors are abusing trust in federated authentication environments to access protected data. The exploitation occurs after the actors have gained initial access to a victim’s on-premises network. The actors leverage privileged access in the on-premises environment to subvert the mechanisms that the organization uses to grant access to cloud and on-premises resources and/or to compromise administrator credentials with the ability to manage cloud resources. The actors demonstrate two sets of tactics, techniques,and procedures (TTP) for gaining access to the victim network’s cloud resources, often with a particular focus on organizational email. In the first TTP, the actors compromise on-premises components of a federated SSO infrastructure and steal the credential or private key that is used to sign Security Assertion Markup Language (SAML) tokens(TA0006, T1552, T1552.004). Using the private keys, the actors then forge trusted authentication tokens to access cloud resources. A recent NSA Cybersecurity Advisory warned of actors exploiting a vulnerability in VMware Access and VMware Identity Manager that allowed them to perform this TTP and abuse federated SSO infrastructure.While that example of this TTP may have previously been attributed to nation-state actors, a wealth of actors could be leveraging this TTP for their objectives. This SAML forgery technique has been known and used by cyber actors since at least 2017. In a variation of the first TTP, if the malicious cyber actors are unable to obtain anon-premises signing key, they would attempt to gain sufficient administrative privileges within the cloud tenant to add a malicious certificate trust relationship for forging SAML tokens. In the second TTP, the actors leverage a compromised global administrator account to assign credentials to cloud application service principals (identities for cloud applications that allow the applications to be invoked to access other cloud resources). The actors then invoke the application’s credentials for automated access to cloud resources (often email in particular) that would otherwise be difficult for the actors to access or would more easily be noticed as suspicious (T1114, T1114.002). This is an ongoing story, and I expect to see a lot more about TTP -- nice acronym there -- in coming weeks. Related: Tom Bossert has a scathing op-ed on the breach. Jack Goldsmith’s essay is worth reading. So is Nick Weaver’s. ** *** ***** ******* *********** ************* Eavesdropping on Phone Taps from Voice Assistants [2020.12.22] The microphones on voice assistants are very sensitive, and can snoop on all sorts of data: In Hey Alexa what did I just type? we show that when sitting up to half a meter away, a voice assistant can still hear the taps you make on your phone, even in presence of noise. Modern voice assistants have two to seven microphones, so they can do directional localisation, just as human ears do, but with greater sensitivity. We assess the risk and show that a lot more work is needed to understand the privacy implications of the always-on microphones that are increasingly infesting our work spaces and our homes. From the paper: Abstract: Voice assistants are now ubiquitous and listen in on our everyday lives. Ever since they became commercially available, privacy advocates worried that the data they collect can be abused: might private conversations be extracted by third parties? In this paper we show that privacy threats go beyond spoken conversations and include sensitive data typed on nearby smartphones. Using two different smartphones and a tablet we demonstrate that the attacker can extract PIN codes and text messages from recordings collected by a voice assistant located up to half a meter away. This shows that remote keyboard-inference attacks are not limited to physical keyboards but extend to virtual keyboards too. As our homes become full of always-on microphones, we need to work through the implications. ** *** ***** ******* *********** ************* Investigating the Navalny Poisoning [2020.12.23] Bellingcat has investigated the near-fatal poisoning of Alexey Navalny by the Russian FSB back in August. The details display some impressive traffic analysis. Navalny got a confession out of one of the poisoners, displaying some masterful social engineering. Lots of interesting opsec details in all of this. EDITED TO ADD (1/13) Bellingcat on their methodology. ** *** ***** ******* *********** ************* How China Uses Stolen US Personnel Data [2020.12.24] Interesting analysis of China’s efforts to identify US spies: By about 2010, two former CIA officials recalled, the Chinese security services had instituted a sophisticated travel intelligence program, developing databases that tracked flights and passenger lists for espionage purposes. “We looked at it very carefully,” said the former senior CIA official. China’s spies “were actively using that for counterintelligence and offensive intelligence. The capability was there and was being utilized.” China had also stepped up its hacking efforts targeting biometric and passenger data from transit hubs... To be sure, China had stolen plenty of data before discovering how deeply infiltrated it was by U.S. intelligence agencies. However, the shake-up between 2010 and 2012 gave Beijing an impetus not only to go after bigger, riskier targets, but also to put together the infrastructure needed to process the purloined information. It was around this time, said a former senior NSA official, that Chinese intelligence agencies transitioned from merely being able to steal large datasets en masse to actually rapidly sifting through information from within them for use.... For U.S. intelligence personnel, these new capabilities made China’s successful hack of the U.S. Office of Personnel Management (OPM) that much more chilling. During the OPM breach, Chinese hackers stole detailed, often highly sensitive personnel data from 21.5 million current and former U.S. officials, their spouses, and job applicants, including health, residency, employment, fingerprint, and financial data. In some cases, details from background investigations tied to the granting of security clearances -- investigations that can delve deeply into individuals’ mental health records, their sexual histories and proclivities, and whether a person’s relatives abroad may be subject to government blackmail -- were stolen as well.... When paired with travel details and other purloined data, information from the OPM breach likely provided Chinese intelligence potent clues about unusual behavior patterns, biographical information, or career milestones that marked individuals as likely U.S. spies, officials say. Now, these officials feared, China could search for when suspected U.S. spies were in certain locations -- and potentially also meeting secretly with their Chinese sources. China “collects bulk personal data to help it track dissidents or other perceived enemies of China around the world,” Evanina, the top U.S. counterintelligence official, said. [..] But after the OPM breach, anomalies began to multiply. In 2012, senior U.S. spy hunters began to puzzle over some “head-scratchers”: In a few cases, spouses of U.S. officials whose sensitive work should have been difficult to discern were being approached by Chinese and Russian intelligence operatives abroad, according to the former counterintelligence executive. In one case, Chinese operatives tried to harass and entrap a U.S. official’s wife while she accompanied her children on a school field trip to China. “The MO is that, usually at the end of the trip, the lightbulb goes on [and the foreign intelligence service identifies potential persons of interest]. But these were from day one, from the airport onward,” the former official said. Worries about what the Chinese now knew precipitated an intelligence community-wide damage assessment surrounding the OPM and other hacks, recalled Douglas Wise, a former senior CIA official who served deputy director of the Defense Intelligence Agency from 2014 to 2016. Some worried that China might have purposefully secretly altered data in individuals’ OPM files to later use as leverage in recruitment attempts. Officials also believed that the Chinese might sift through the OPM data to try and craft the most ideal profiles for Chinese intelligence assets seeking to infiltrate the U.S. government -- since they now had granular knowledge of what the U.S. government looked for, and what it didn’t, while considering applicants for sensitive positions. U.S. intelligence agencies altered their screening procedures to anticipate new, more finely tuned Chinese attempts at human spying, Wise said. ** *** ***** ******* *********** ************* Russia's SolarWinds Attack [2020.12.28] Recent news articles have all been talking about the massive Russian cyberattack against the United States, but that’s wrong on two accounts. It wasn’t a cyberattack in international relations terms, it was espionage. And the victim wasn’t just the US, it was the entire world. But it was massive, and it is dangerous. Espionage is internationally allowed in peacetime. The problem is that both espionage and cyberattacks require the same computer and network intrusions, and the difference is only a few keystrokes. And since this Russian operation isn’t at all targeted, the entire world is at risk -- and not just from Russia. Many countries carry out these sorts of operations, none more extensively than the US. The solution is to prioritize security and defense over espionage and attack. Here’s what we know: Orion is a network management product from a company named SolarWinds, with over 300,000 customers worldwide. Sometime before March, hackers working for the Russian SVR -- previously known as the KGB -- hacked into SolarWinds and slipped a backdoor into an Orion software update. (We don’t know how, but last year the company’s update server was protected by the password “solarwinds123” -- something that speaks to a lack of security culture.) Users who downloaded and installed that corrupted update between March and June unwittingly gave SVR hackers access to their networks. This is called a supply-chain attack, because it targets a supplier to an organization rather than an organization itself -- and can affect all of a supplier’s customers. It’s an increasingly common way to attack networks. Other examples of this sort of attack include fake apps in the Google Play store, and hacked replacement screens for your smartphone. SolarWinds has removed its customer list from its website, but the Internet Archive saved it: all five branches of the US military, the state department, the White House, the NSA, 425 of the Fortune 500 companies, all five of the top five accounting firms, and hundreds of universities and colleges. In an SEC filing, SolarWinds said that it believes “fewer than 18,000” of those customers installed this malicious update, another way of saying that more than 17,000 did. That’s a lot of vulnerable networks, and it’s inconceivable that the SVR penetrated them all. Instead, it chose carefully from its cornucopia of targets. Microsoft’s analysis identified 40 customers who were infiltrated using this vulnerability. The great majority of those were in the US, but networks in Canada, Mexico, Belgium, Spain, the UK, Israel and the UAE were also targeted. This list includes governments, government contractors, IT companies, thinktanks, and NGOs -- and it will certainly grow. Once inside a network, SVR hackers followed a standard playbook: establish persistent access that will remain even if the initial vulnerability is fixed; move laterally around the network by compromising additional systems and accounts; and then exfiltrate data. Not being a SolarWinds customer is no guarantee of security; this SVR operation used other initial infection vectors and techniques as well. These are sophisticated and patient hackers, and we’re only just learning some of the techniques involved here. Recovering from this attack isn’t easy. Because any SVR hackers would establish persistent access, the only way to ensure that your network isn’t compromised is to burn it to the ground and rebuild it, similar to reinstalling your computer’s operating system to recover from a bad hack. This is how a lot of sysadmins are going to spend their Christmas holiday, and even then they can&;t be sure. There are many ways to establish persistent access that survive rebuilding individual computers and networks. We know, for example, of an NSA exploit that remains on a hard drive even after it is reformatted. Code for that exploit was part of the Equation Group tools that the Shadow Brokers -- again believed to be Russia -- stole from the NSA and published in 2016. The SVR probably has the same kinds of tools. Even without that caveat, many network administrators won’t go through the long, painful, and potentially expensive rebuilding process. They’ll just hope for the best. It’s hard to overstate how bad this is. We are still learning about US government organizations breached: the state department, the treasury department, homeland security, the Los Alamos and Sandia National Laboratories (where nuclear weapons are developed), the National Nuclear Security Administration, the National Institutes of Health, and many more. At this point, there’s no indication that any classified networks were penetrated, although that could change easily. It will take years to learn which networks the SVR has penetrated, and where it still has access. Much of that will probably be classified, which means that we, the public, will never know. And now that the Orion vulnerability is public, other governments and cybercriminals will use it to penetrate vulnerable networks. I can guarantee you that the NSA is using the SVR’s hack to infiltrate other networks; why would they not? (Do any Russian organizations use Orion? Probably.) While this is a security failure of enormous proportions, it is not, as Senator Richard Durban said, “virtually a declaration of war by Russia on the United States.” While President-elect Biden said he will make this a top priority, it’s unlikely that he will do much to retaliate. The reason is that, by international norms, Russia did nothing wrong. This is the normal state of affairs. Countries spy on each other all the time. There are no rules or even norms, and it’s basically “buyer beware.” The US regularly fails to retaliate against espionage operations -- such as China’s hack of the Office of Personal Management (OPM) and previous Russian hacks -- because we do it, too. Speaking of the OPM hack, the then director of national intelligence, James Clapper, said: “You have to kind of salute the Chinese for what they did. If we had the opportunity to do that, I don’t think we’d hesitate for a minute.” We don’t, and I’m sure NSA employees are grudgingly impressed with the SVR. The US has by far the most extensive and aggressive intelligence operation in the world. The NSA’s budget is the largest of any intelligence agency. It aggressively leverages the US’s position controlling most of the internet backbone and most of the major internet companies. Edward Snowden disclosed many targets of its efforts around 2014, which then included 193 countries, the World Bank, the IMF and the International Atomic Energy Agency. We are undoubtedly running an offensive operation on the scale of this SVR operation right now, and it’ll probably never be made public. In 2016, President Obama boasted that we have “more capacity than anybody both offensively and defensively.” He may have been too optimistic about our defensive capability. The US prioritizes and spends many times more on offense than on defensive cybersecurity. In recent years, the NSA has adopted a strategy of “persistent engagement,” sometimes called “defending forward.” The idea is that instead of passively waiting for the enemy to attack our networks and infrastructure, we go on the offensive and disrupt attacks before they get to us. This strategy was credited with foiling a plot by the Russian Internet Research Agency to disrupt the 2018 elections. But if persistent engagement is so effective, how could it have missed this massive SVR operation? It seems that pretty much the entire US government was unknowingly sending information back to Moscow. If we had been watching everything the Russians were doing, we would have seen some evidence of this. The Russians’ success under the watchful eye of the NSA and US Cyber Command shows that this is a failed approach. And how did US defensive capability miss this? The only reason we know about this breach is because, earlier this month, the security company FireEye discovered that it had been hacked. During its own audit of its network, it uncovered the Orion vulnerability and alerted the US government. Why don’t organizations like the Departments of State, Treasury and Homeland Wecurity regularly conduct that level of audit on their own systems? The government’s intrusion detection system, Einstein 3, failed here because it doesn’t detect new sophisticated attacks -- a deficiency pointed out in 2018 but never fixed. We shouldn’t have to rely on a private cybersecurity company to alert us of a major nation-state attack. If anything, the US’s prioritization of offense over defense makes us less safe. In the interests of surveillance, the NSA has pushed for an insecure cell phone encryption standard and a backdoor in random number generators (important for secure encryption). The DoJ has never relented in its insistence that the world’s popular encryption systems be made insecure through back doors -- another hot point where attack and defense are in conflict. In other words, we allow for insecure standards and systems, because we can use them to spy on others. We need to adopt a defense-dominant strategy. As computers and the internet become increasingly essential to society, cyberattacks are likely to be the precursor to actual war. We are simply too vulnerable when we prioritize offense, even if we have to give up the advantage of using those insecurities to spy on others. Our vulnerability is magnified as eavesdropping may bleed into a direct attack. The SVR’s access allows them not only to eavesdrop, but also to modify data, degrade network performance, or erase entire networks. The first might be normal spying, but the second certainly could be considered an act of war. Russia is almost certainly laying the groundwork for future attack. This preparation would not be unprecedented. There’s a lot of attack going on in the world. In 2010, the US and Israel attacked the Iranian nuclear program. In 2012, Iran attacked the Saudi national oil company. North Korea attacked Sony in 2014. Russia attacked the Ukrainian power grid in 2015 and 2016. Russia is hacking the US power grid, and the US is hacking Russia’s power grid -- just in case the capability is needed someday. All of these attacks began as a spying operation. Security vulnerabilities have real-world consequences. We’re not going to be able to secure our networks and systems in this no-rules, free-for-all every-network-for-itself world. The US needs to willingly give up part of its offensive advantage in cyberspace in exchange for a vastly more secure global cyberspace. We need to invest in securing the world’s supply chains from this type of attack, and to press for international norms and agreements prioritizing cybersecurity, like the 2018 Paris Call for Trust and Security in Cyberspace or the Global Commission on the Stability of Cyberspace. Hardening widely used software like Orion (or the core internet protocols) helps everyone. We need to dampen this offensive arms race rather than exacerbate it, and work towards cyber peace. Otherwise, hypocritically criticizing the Russians for doing the same thing we do every day won’t help create the safer world in which we all want to live. This essay previously appeared in the Guardian. ** *** ***** ******* *********** ************* On the Evolution of Ransomware [2020.12.30] Good article on the evolution of ransomware: Though some researchers say that the scale and severity of ransomware attacks crossed a bright line in 2020, others describe this year as simply the next step in a gradual and, unfortunately, predictable devolution. After years spent honing their techniques, attackers are growing bolder. They’ve begun to incorporate other types of extortion like blackmail into their arsenals, by exfiltrating an organization’s data and then threatening to release it if the victim doesn’t pay an additional fee. Most significantly, ransomware attackers have transitioned from a model in which they hit lots of individuals and accumulated many small ransom payments to one where they carefully plan attacks against a smaller group of large targets from which they can demand massive ransoms. The antivirus firm Emsisoft found that the average requested fee has increased from about $5,000 in 2018 to about $200,000 this year. Ransomware is a decades-old idea. Today, it’s increasingly profitable and professional. ** *** ***** ******* *********** ************* Brexit Deal Mandates Old Insecure Crypto Algorithms [2020.12.31] In what is surely an unthinking cut-and-paste issue, page 921 of the Brexit deal mandates the use of SHA-1 and 1024-bit RSA: The open standard s/MIME as extension to de facto e-mail standard SMTP will be deployed to encrypt messages containing DNA profile information. The protocol s/MIME (V3) allows signed receipts, security labels, and secure mailing lists... The underlying certificate used by s/MIME mechanism has to be in compliance with X.509 standard.... The processing rules for s/MIME encryption operations... are as follows: the sequence of the operations is: first encryption and then signing, the encryption algorithm AES (Advanced Encryption Standard) with 256 bit key length and RSA with 1,024 bit key length shall be applied for symmetric and asymmetric encryption respectively, the hash algorithm SHA-1 shall be applied. s/MIME functionality is built into the vast majority of modern e-mail software packages including Outlook, Mozilla Mail as well as Netscape Communicator 4.x and inter-operates among all major e-mail software packages. And s/MIME? Bleah. ** *** ***** ******* *********** ************* Amazon Has Trucks Filled with Hard Drives and an Armed Guard [2021.01.04] From an interview with an Amazon Web Services security engineer: So when you use AWS, part of what you’re paying for is security. Right; it’s part of what we sell. Let’s say a prospective customer comes to AWS. They say, “I like pay-as-you-go pricing. Tell me more about that.” We say, “Okay, here’s how much you can use at peak capacity. Here are the savings we can see in your case.” Then the company says, “How do I know that I’m secure on AWS?” And this is where the heat turns up. This is where we get them. We say, “Well, let’s take a look at what you’re doing right now and see if we can offer a comparable level of security.” So they tell us about the setup of their data centers. We say, “Oh my! It seems like we have level five security and your data center has level three security. Are you really comfortable staying where you are?” The customer figures, not only am I going to save money by going with AWS, I also just became aware that I’m not nearly as secure as I thought. Plus, we make it easy to migrate and difficult to leave. If you have a ton of data in your data center and you want to move it to AWS but you don’t want to send it over the internet, we’ll send an eighteen-wheeler to you filled with hard drives, plug it into your data center with a fiber optic cable, and then drive it across the country to us after loading it up with your data. What? How do you do that? We have a product called Snowmobile. It’s a gas-guzzling truck. There are no public pictures of the inside, but it’s pretty cool. It’s like a modular datacenter on wheels. And customers rightly expect that if they load a truck with all their data, they want security for that truck. So there’s an armed guard in it at all times. It’s a pretty easy sell. If a customer looks at that option, they say, yeah, of course I want the giant truck and the guy with a gun to move my data, not some crappy system that I develop on my own. Lots more about how AWS views security, and Keith Alexander’s position on Amazon’s board of directors, in the interview. Found on Slashdot. ** *** ***** ******* *********** ************* Military Cryptanalytics, Part III [2021.01.04] The NSA has just declassified and released a redacted version of Military Cryptanalytics, Part III, by Lambros D. Callimahos, October 1977. Parts I and II, by Lambros D. Callimahos and William F. Friedman, were released decades ago -- I believe repeatedly, in increasingly unredacted form -- and published by the late Wayne Griswold Barker’s Agean Park Press. I own them in hardcover. Like Parts I and II, Part III is primarily concerned with pre-computer ciphers. At this point, the document only has historical interest. If there is any lesson for today, it’s that modern cryptanalysis is possible primarily because people make mistakes The monograph took a while to become public. The cover page says that the initial FOIA request was made in July 2012: eight and a half years ago. And there’s more books to come. Page 1 starts off: This text constitutes the third of six basic texts on the science of cryptanalytics. The first two texts together have covered most of the necessary fundamentals of cryptanalytics; this and the remaining three texts will be devoted to more specialized and more advanced aspects of the science. Presumably, volumes IV, V, and VI are still hidden inside the classified libraries of the NSA. And from page ii: Chapters IV-XI are revisions of seven of my monographs in the NSA Technical Literature Series, viz: Monograph No. 19, “The Cryptanalysis of Ciphertext and Plaintext Autokey Systems”; Monograph No. 20, “The Analysis of Systems Employing Long or Continuous Keys”; Monograph No. 21, “The Analysis of Cylindrical Cipher Devices and Strip Cipher Systems”; Monograph No. 22, “The Analysis of Systems Employing Geared Disk Cryptomechanisms”; Monograph No.23, “Fundamentals of Key Analysis”; Monograph No. 15, “An Introduction to Teleprinter Key Analysis”; and Monograph No. 18, “Ars Conjectandi: The Fundamentals of Cryptodiagnosis.” This points to a whole series of still-classified monographs whose titles we do not even know. EDITED TO ADD: I have been informed by a reliable source that Parts 4 through 6 were never completed. There may be fragments and notes, but no finished works. ** *** ***** ******* *********** ************* Latest on the SVR's SolarWinds Hack [2021.01.05] The New York Times has an in-depth article on the latest information about the SolarWinds hack (not a great name, since it’s much more far-reaching than that). Interviews with key players investigating what intelligence agencies believe to be an operation by Russia’s S.V.R. intelligence service revealed these points: The breach is far broader than first believed. Initial estimates were that Russia sent its probes only into a few dozen of the 18,000 government and private networks they gained access to when they inserted code into network management software made by a Texas company named SolarWinds. But as businesses like Amazon and Microsoft that provide cloud services dig deeper for evidence, it now appears Russia exploited multiple layers of the supply chain to gain access to as many as 250 networks. The hackers managed their intrusion from servers inside the United States, exploiting legal prohibitions on the National Security Agency from engaging in domestic surveillance and eluding cyberdefenses deployed by the Department of Homeland Security. “Early warning” sensors placed by Cyber Command and the National Security Agency deep inside foreign networks to detect brewing attacks clearly failed. There is also no indication yet that any human intelligence alerted the United States to the hacking. The government’s emphasis on election defense, while critical in 2020, may have diverted resources and attention from long-brewing problems like protecting the “supply chain” of software. In the private sector, too, companies that were focused on election security, like FireEye and Microsoft, are now revealing that they were breached as part of the larger supply chain attack. SolarWinds, the company that the hackers used as a conduit for their attacks, had a history of lackluster security for its products, making it an easy target, according to current and former employees and government investigators. Its chief executive, Kevin B. Thompson, who is leaving his job after 11 years, has sidestepped the question of whether his company should have detected the intrusion. Some of the compromised SolarWinds software was engineered in Eastern Europe, and American investigators are now examining whether the incursion originated there, where Russian intelligence operatives are deeply rooted. Separately, it seems that the SVR conducted a dry run of the attack five months before the actual attack: The hackers distributed malicious files from the SolarWinds network in October 2019, five months before previously reported files were sent to victims through the company’s software update servers. The October files, distributed to customers on Oct. 10, did not have a backdoor embedded in them, however, in the way that subsequent malicious files that victims downloaded in the spring of 2020 did, and these files went undetected until this month. [...] “This tells us the actor had access to SolarWinds’ environment much earlier than this year. We know at minimum they had access Oct. 10, 2019. But they would certainly have had to have access longer than that,” says the source. “So that intrusion [into SolarWinds] has to originate probably at least a couple of months before that - probably at least mid-2019 [if not earlier].” The files distributed to victims in October 2019 were signed with a legitimate SolarWinds certificate to make them appear to be authentic code for the company’s Orion Platform software, a tool used by system administrators to monitor and configure servers and other computer hardware on their network. ** *** ***** ******* *********** ************* Backdoor in Zyxel Firewalls and Gateways [2021.01.06] This is bad: More than 100,000 Zyxel firewalls, VPN gateways, and access point controllers contain a hardcoded admin-level backdoor account that can grant attackers root access to devices via either the SSH interface or the web administration panel. [...] Installing patches removes the backdoor account, which, according to Eye Control researchers, uses the “zyfwp” username and the “PrOw!aN_fXp” password. “The plaintext password was visible in one of the binaries on the system,” the Dutch researchers said in a report published before the Christmas 2020 holiday. ** *** ***** ******* *********** ************* Extracting Personal Information from Large Language Models Like GPT-2 [2021.01.07] Researchers have been able to find all sorts of personal information within GPT-2. This information was part of the training data, and can be extracted with the right sorts of queries. Paper: “Extracting Training Data from Large Language Models.” Abstract: It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model. We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model’s training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data. We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. For example, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models. From a blog post: We generated a total of 600,000 samples by querying GPT-2 with three different sampling strategies. Each sample contains 256 tokens, or roughly 200 words on average. Among these samples, we selected 1,800 samples with abnormally high likelihood for manual inspection. Out of the 1,800 samples, we found 604 that contain text which is reproduced verbatim from the training set. The rest of the blog post discusses the types of data they found. ** *** ***** ******* *********** ************* Russia's SolarWinds Attack and Software Security [2021.01.08] The information that is emerging about Russia’s extensive cyberintelligence operation against the United States and other countries should be increasingly alarming to the public. The magnitude of the hacking, now believed to have affected more than 250 federal agencies and businesses -- primarily through a malicious update of the SolarWinds network management software -- may have slipped under most people’s radar during the holiday season, but its implications are stunning. According to a Washington Post report, this is a massive intelligence coup by Russia’s foreign intelligence service (SVR). And a massive security failure on the part of the United States is also to blame. Our insecure Internet infrastructure has become a critical national security risk -- one that we need to take seriously and spend money to reduce. President-elect Joe Biden’s initial response spoke of retaliation, but there really isn’t much the United States can do beyond what it already does. Cyberespionage is business as usual among countries and governments, and the United States is aggressively offensive in this regard. We benefit from the lack of norms in this area and are unlikely to push back too hard because we don’t want to limit our own offensive actions. Biden took a more realistic tone last week when he spoke of the need to improve US defenses. The initial focus will likely be on how to clean the hackers out of our networks, why the National Security Agency and US Cyber Command failed to detect this intrusion and whether the 2-year-old Cybersecurity and Infrastructure Security Agency has the resources necessary to defend the United States against attacks of this caliber. These are important discussions to have, but we also need to address the economic incentives that led to SolarWinds being breached and how that insecure software ended up in so many critical US government networks. Software has become incredibly complicated. Most of us almost don’t know all of the software running on our laptops and what it’s doing. We don’t know where it’s connecting to on the Internet -- not even which countries it’s connecting to -- and what data it’s sending. We typically don’t know what third party libraries are in the software we install. We don’t know what software any of our cloud services are running. And we’re rarely alone in our ignorance. Finding all of this out is incredibly difficult. This is even more true for software that runs our large government networks, or even the Internet backbone. Government software comes from large companies, small suppliers, open source projects and everything in between. Obscure software packages can have hidden vulnerabilities that affect the security of these networks, and sometimes the entire Internet. Russia’s SVR leveraged one of those vulnerabilities when it gained access to SolarWinds’ update server, tricking thousands of customers into downloading a malicious software update that gave the Russians access to those networks. The fundamental problem is one of economic incentives. The market rewards quick development of products. It rewards new features. It rewards spying on customers and users: collecting and selling individual data. The market does not reward security, safety or transparency. It doesn’t reward reliability past a bare minimum, and it doesn’t reward resilience at all. This is what happened at SolarWinds. A New York Times report noted the company ignored basic security practices. It moved software development to Eastern Europe, where Russia has more influence and could potentially subvert programmers, because it’s cheaper. Short-term profit was seemingly prioritized over product security. Companies have the right to make decisions like this. The real question is why the US government bought such shoddy software for its critical networks. This is a problem that Biden can fix, and he needs to do so immediately. The United States needs to improve government software procurement. Software is now critical to national security. Any system for acquiring software needs to evaluate the security of the software and the security practices of the company, in detail, to ensure they are sufficient to meet the security needs of the network they’re being installed in. Procurement contracts need to include security controls of the software development process. They need security attestations on the part of the vendors, with substantial penalties for misrepresentation or failure to comply. The government needs detailed best practices for government and other companies. Some of the groundwork for an approach like this has already been laid by the federal government, which has sponsored the development of a “Software Bill of Materials” that would set out a process for software makers to identify the components used to assemble their software. This scrutiny can’t end with purchase. These security requirements need to be monitored throughout the software’s life cycle, along with what software is being used in government networks. None of this is cheap, and we should be prepared to pay substantially more for secure software. But there’s a benefit to these practices. If the government evaluations are public, along with the list of companies that meet them, all network buyers can benefit from them. The US government acting purely in the realm of procurement can improve the security of nongovernmental networks worldwide. This is important, but it isn’t enough. We need to set minimum safety and security standards for all software: from the code in that Internet of Things appliance you just bought to the code running our critical national infrastructure. It’s all one network, and a vulnerability in your refrigerator’s software can be used to attack the national power grid. The IOT Cybersecurity Improvement Act, signed into law last month, is a start in this direction. The Biden administration should prioritize minimum security standards for all software sold in the United States, not just to the government but to everyone. Long gone are the days when we can let the software industry decide how much emphasis to place on security. Software security is now a matter of personal safety: whether it’s ensuring your car isn’t hacked over the Internet or that the national power grid isn’t hacked by the Russians. This regulation is the only way to force companies to provide safety and security features for customers -- just as legislation was necessary to mandate food safety measures and require auto manufacturers to install life-saving features such as seat belts and air bags. Smart regulations that incentivize innovation create a market for security features. And they improve security for everyone. It’s true that creating software in this sort of regulatory environment is more expensive. But if we truly value our personal and national security, we need to be prepared to pay for it. The truth is that we’re already paying for it. Today, software companies increase their profits by secretly pushing risk onto their customers. We pay the cost of insecure personal computers, just as the government is now paying the cost to clean up after the SolarWinds hack. Fixing this requires both transparency and regulation. And while the industry will resist both, they are essential for national security in our increasingly computer-dependent worlds. This essay previously appeared on CNN.com. ** *** ***** ******* *********** ************* APT Horoscope [2021.01.08] This delightful essay matches APT hacker groups up with astrological signs. This is me: Capricorn is renowned for its discipline, skilled navigation, and steadfastness. Just like Capricorn, Helix Kitten (also known as APT 35 or OilRig) is a skilled navigator of vast online networks, maneuvering deftly across an array of organizations, including those in aerospace, energy, finance, government, hospitality, and telecommunications. Steadfast in its work and objectives, Helix Kitten has a consistent track record of developing meticulous spear-phishing attacks. ** *** ***** ******* *********** ************* Changes in WhatsApp's Privacy Policy [2021.01.11] If you’re a WhatsApp user, pay attention to the changes in the privacy policy that you’re being forced to agree with. In 2016, WhatsApp gave users a one-time ability to opt out of having account data turned over to Facebook. Now, an updated privacy policy is changing that. Come next month, users will no longer have that choice. Some of the data that WhatsApp collects includes: User phone numbers Other people’s phone numbers stored in address books Profile names Profile pictures and Status message including when a user was last online Diagnostic data collected from app logs Under the new terms, Facebook reserves the right to share collected data with its family of companies. EDITED TO ADD (1/13): WhatsApp tries to explain. ** *** ***** ******* *********** ************* Cloning Google Titan 2FA keys [2021.01.12] This is a clever side-channel attack: The cloning works by using a hot air gun and a scalpel to remove the plastic key casing and expose the NXP A700X chip, which acts as a secure element that stores the cryptographic secrets. Next, an attacker connects the chip to hardware and software that take measurements as the key is being used to authenticate on an existing account. Once the measurement-taking is finished, the attacker seals the chip in a new casing and returns it to the victim. Extracting and later resealing the chip takes about four hours. It takes another six hours to take measurements for each account the attacker wants to hack. In other words, the process would take 10 hours to clone the key for a single account, 16 hours to clone a key for two accounts, and 22 hours for three accounts. By observing the local electromagnetic radiations as the chip generates the digital signatures, the researchers exploit a side channel vulnerability in the NXP chip. The exploit allows an attacker to obtain the long-term elliptic curve digital signal algorithm private key designated for a given account. With the crypto key in hand, the attacker can then create her own key, which will work for each account she targeted. The attack isn’t free, but it’s not expensive either: A hacker would first have to steal a target’s account password and also gain covert possession of the physical key for as many as 10 hours. The cloning also requires up to $12,000 worth of equipment and custom software, plus an advanced background in electrical engineering and cryptography. That means the key cloning -- were it ever to happen in the wild -- would likely be done only by a nation-state pursuing its highest-value targets. That last line about “nation-state pursuing its highest-value targets” is just not true. There are many other situations where this attack is feasible. Note that the attack isn’t against the Google system specifically. It exploits a side-channel attack in the NXP chip. Which means that other systems are probably vulnerable: While the researchers performed their attack on the Google Titan, they believe that other hardware that uses the A700X, or chips based on the A700X, may also be vulnerable. If true, that would include Yubico’s YubiKey NEO and several 2FA keys made by Feitian. ** *** ***** ******* *********** ************* On US Capitol Security -- By Someone Who Manages Arena-Rock-Concert Security [2021.01.13] Smart commentary: ...I was floored on Wednesday when, glued to my television, I saw police in some areas of the U.S. Capitol using little more than those same mobile gates I had the ones that look like bike racks that can hook together to try to keep the crowds away from sensitive areas and, later, push back people intent on accessing the grounds. (A new fence that appears to be made of sturdier material was being erected on Thursday.) That’s the same equipment and approximately the same amount of force I was able to use when a group of fans got a little feisty and tried to get backstage at a Vanilla Ice show. [...] There’s not ever going to be enough police or security at any event to stop people if they all act in unison; if enough people want to get to Vanilla Ice at the same time, they’re going to get to Vanilla Ice. Social constructs and basic decency, not lightweight security gates, are what hold everyone except the outliers back in a typical crowd. [...] When there are enough outliers in a crowd, it throws the normal dynamics of crowd control off; everyone in my business knows this. Citizens tend to hold each other to certain standards which is why my 40,000-person town does not have 40,000 police officers, and why the 8.3 million people of New York City aren’t policed by 8.3 million police officers. Social norms are the fabric that make an event run smoothly -- and, really, hold society together. There aren’t enough police in your town to handle it if everyone starts acting up at the same time. I like that she uses the term “outliers,” and I make much the same points in Liars and Outliers. ** *** ***** ******* *********** ************* Finding the Location of Telegram Users [2021.01.14] Security researcher Ahmed Hassan has shown that spoofing the Android's "People Nearby" feature allows him to pinpoint the physical location of Telegram users: Using readily available software and a rooted Android device, he's able to spoof the location his device reports to Telegram servers. By using just three different locations and measuring the corresponding distance reported by People Nearby, he is able to pinpoint a user's precise location. [...] A proof-of-concept video the researcher sent to Telegram showed how he could discern the address of a People Nearby user when he used a free GPS spoofing app to make his phone report just three different locations. He then drew a circle around each of the three locations with a radius of the distance reported by Telegram. The user's precise location was where all three intersected. [...] Fixing the problem -- or at least making it much harder to exploit it -- wouldn't be hard from a technical perspective. Rounding locations to the nearest mile and adding some random bits generally suffices. When the Tinder app had a similar disclosure vulnerability, developers used this kind of technique to fix it. ** *** ***** ******* *********** ************* Upcoming Speaking Engagements [2021.01.14] This is a current list of where and when I am scheduled to speak: I'm speaking (online) as part of Western Washington University's Internet Studies Lecture Series on January 20, 2021. I'm speaking at ITY Denmark on February 2, 2021. Details to come. I'm being interviewed by Keith Cronin as part of The Center for Innovation, Security, and New Technology's CSINT Conversations series, February 10, 2021 from 11:00 AM - 11:30 AM CST. I’ll be speaking at an Informa event on February 28, 2021. Details to come. The list is maintained on this page. ** *** ***** ******* *********** ************* Click Here to Kill Everybody Sale [2021.01.15] For a limited time, I am selling signed copies of Click Here to Kill Everybody in hardcover for just $6, plus shipping. Note that I have had occasional problems with international shipping. The book just disappears somewhere in the process. At this price, international orders are at the buyer's risk. Also, the USPS keeps reminding us that shipping -- both US and international -- may be delayed during the pandemic. I have 500 copies of the book available. When they're gone, the sale is over and the price will revert to normal. Order here. ** *** ***** ******* *********** ************* Since 1998, CRYPTO-GRAM has been a free monthly newsletter providing summaries, analyses, insights, and commentaries on security technology. To subscribe, or to read back issues, see Crypto-Gram's web page. You can also read these articles on my blog, Schneier on Security. Please feel free to forward CRYPTO-GRAM, in whole or in part, to colleagues and friends who will find it valuable. Permission is also granted to reprint CRYPTO-GRAM, as long as it is reprinted in its entirety. Bruce Schneier is an internationally renowned security technologist, called a security guru by the Economist. He is the author of over one dozen books -- including his latest, We Have Root -- as well as hundreds of articles, essays, and academic papers. His newsletter and blog are read by over 250,000 people. Schneier is a fellow at the Berkman Klein Center for Internet & Society at Harvard University; a Lecturer in Public Policy at the Harvard Kennedy School; a board member of the Electronic Frontier Foundation, AccessNow, and the Tor Project; and an Advisory Board Member of the Electronic Privacy Information Center and VerifiedVoting.org. He is the Chief of Security Architecture at Inrupt, Inc. Copyright © 2021 by Bruce Schneier. --- GoldED+/OSX 1.1.5-b20180707 * Origin: A Pointless Point in Connemara (618:500/14.1) |
||||||
|
Previous Message | Next Message | Back to Computer Support/Help/Discussion... <-- <--- | Return to Home Page |
Execution Time: 0.0169 seconds If you experience any problems with this website or need help, contact the webmaster. VADV-PHP Copyright © 2002-2024 Steve Winn, Aspect Technologies. All Rights Reserved. Virtual Advanced Copyright © 1995-1997 Roland De Graaf. |